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ABSTRACT

This note is a preliminary study of radar signals viewed as discretised nonlinear
dynamical systems. Motivated by [Haykin and Li 1995], a class of recursively
defined signals is introduced, and two specific examples are considered. It will
be shown that such signals can exhibit complex dynamics in phase space. This
means that they experience sensitive dependence on initial conditions. Using
the Lyapunov spectrum, we determine the stability of these signals. We will
also investigate whether such signals are of practical use in radar by examining
their ambiguity functions.
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Examples of a Class of Chaotic Radar Signals

EXECUTIVE SUMMARY

This work is a preliminary investigation of a class of radar signals generated by recursively
defined functions. Signals are of fundamental importance in radar, since a radar system
uses transmitted and returned signals from the environment to decide on the presence of
targets, as well as their range, bearing and speed. The issue of an appropriate choice of
signal is complex, and application dependent. There are many types of signals, including
linear frequency modulation, single frequency pulse trains, step frequency pulse trains,
step frequency continuous waves, pseudorandom codes and random noise. This note is a
brief examination of a new class of signals, known as chaotic signals. Such signals may be
of importance in radar for a number of reasons. The first is that they are generated from
a deterministic map, but can be made to appear as noise. This would be useful from an
electronic protection point of view. Secondly, since these signals can be generated from a
single dynamical system, with different control parameters and initial conditions, it may
be possible to reduce the need for a comprehensive library of signals in a radar system.

The generation of such signals, as a discrete time dynamical system, will be outlined.
We investigate the stability of such signals, using the Lyapunov spectrum. Two such
signals will be examined, generated from recursions of sinusoidal functions. The first is
generated by recursions of the function ψ(x,λ) = λ sin(2πx), while the second is generated
via ψ(x,λ) = sin(2πx) + cos(2πλx). We will show signals generated from these functions
have sensitive dependence on initial conditions, and a very interesting phase portrait. The
radar ambiguity function is used to decide whether these signals are of practical use in
radar.
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1 Introduction

The purpose of this note is to consider a class of recursively defined signals that exhibit
complex dynamics in phase space. This work arose out of an interesting radar signal in
[Haykin and Li 1995]. This signal exhibits sensitive dependence on initial conditions, and
has an unusual self replicating feature in phase space. The main issue to be addressed in
this note is whether such signals are of practical use in radar.

Signals are of paramount importance in radar. Radar systems use different types of signals
for specific applications in varying situational contexts [Ringer, Frazer and Anderson 1999
and Lin and Liu 2004]. There are hence many different classes of radar signals. [Ringer,
Frazer and Anderson 1999] describes four classes of radar signals, based upon their char-
acteristics and ambiguity functions. Linear frequency modulation, single frequency pulse
trains, step frequency pulse trains, step frequency continuous waves, pseudorandom codes
and random noise are examples pointed out in [Lin and Liu 2004]. A relatively new class
of signals are those which have chaotic dynamics [Lin and Liu 2004, Sobhy and Shehata
2000 and Wu et. al. 2001]. Such a class of signals exhibits a phenomenon known as
sensitive dependence on initial conditions. These signals may be useful in radar in the
way code division multiple access (CDMA) is useful in digital telephony [Zigangirov 2004].
The advantage of CDMA is that the transmitted signal appears as noise to all but the in-
tended recipient. It is possible that chaotic signals could be used to mask the signal within
environmental noise and interference, so that targets may not be aware of the presence of
a scanning radar. Hence these signals may be of use as an electronic protection measure
for the radar platform.

Chaos theory investigates strange behaviour found in nonlinear deterministic dynamical
systems. Such unusual behaviour in dynamical systems was first discovered by Poincaré,
in 1903, who was attempting to show rigorously that the solar system, as modelled by
Newton’s Laws of Motion, is dynamically stable [Strogatz 1994]. He discovered that small
differences in initial conditions can produce drastically different final solutions. Another
early important study of dynamical systems exhibiting strange behaviour is [Lorenz 1963],
who developed a system of coupled nonlinear differential equations to model weather
patterns, and also observed this strange sensitivity to initial conditions. Lorenz coined the
phrase “the butterfly effect” to illustrate this sensitivity. The latter implies a butterfly
flapping its wings in one part of the world can have an effect on the weather in another
distant part of the world. The term chaos first appeared in a dynamical systems context
in [Li and Yorke 1975].

A chaotic dynamical system is a nonlinear dynamical system whose output has sensitive
dependence on initial conditions. Chaos theory is the analysis of the behaviour of such
systems. As such, chaos theory is not really a theory of chaos, but is more concerned with
understanding the complex behaviour of nonlinear dynamical systems. We will introduce
briefly the study of such systems, and in particular, will be interested in determining
under what conditions such a system becomes chaotic. A class of radar signals will be
introduced. We will examine two signals in this class, and apply the ambiguity function
to see whether they are of practical use in radar.
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2 Radar Signals and Dynamical Systems

In this section we introduce a class of radar signals, defined through a dynamical system,
and outline how such signals can be classified as chaotic. To this end, we introduce neces-
sary definitions, as well as the three so-called signatures of chaos. Some useful references
on dynamical systems and chaos are [Drazin 1992, Strogatz 1994, Hale and Koçak 1991,
Haykin and Puthusserypady 1999 and Williams 1997]. References on radar signals include
[Bird 1974, Cook and Bernfield 1967, Helstrom 1960, Levanon 1988 and Levanon and
Mozeson 2004].

2.1 Signals as Dynamical Systems

Let S be the class of all real-valued radar signals, including both those defined on a
discrete and continuous time domain. In order to motivate the work to follow, we consider
a subclass of S that can be defined through a dynamical system. Assume x(t) ∈ S,
is continuous and differentiable within a domain. From a physical point of view, the
derivative of this signal, d

dtx(t), is the rate of change of it in a propagating medium. We

may hence analyse the signal via this rate of change, so assume that φ(t) = d
dtx(t). In

addition to this, we may assume that in some cases, φ(t) can be expressed as a nonlinear
composition of the signal x(t). Thus, there may exist a function ψ such that φ(t) = ψ(x(t)).
Hence, equivalently, x (t) = ψ(x(t)).

To show this class of signals is nonempty, consider the signal x(t) = sin(t), for t ∈ D =
(0, π2 ). Its derivative is x (t) = φ(t) = cos(t). Choose ψ(t) =

√
1− t2. Then ψ(x(t)) = φ(t)

on D. Hence, we can define the class of signals C = {x(t) : there exists a ψ : x (t) =
ψ(x(t))}.

As in [Haykin and Li 1995], we can consider discretised time, since signals are often
digitised so they can be processed by digital computers. Hence we can further restrict
attention to the subclass CD ⊂ S defined by the set {x(n) : there exists a ψ : x(n+ 1) =
ψ(x(n))}. The function ψ defined in the set CD will be referred to as a generator of a
signal.

We specialise the discussion to one dimensional discrete maps, since we will be exclusively
studying signals from the class CD. A dynamical system is a physical system which is
described by a deterministic set of rules that change with time. Suppose the variables
{x(n) : n ∈ IN} describe the states of the system at each discrete time point n. Then we
assume there is a generator function ψ, defined on the range of x(n), such that

x(n+ 1) = ψ(x(n)). (1)

The generator ψ in (1) determines the evolution of the system, and in general will be
nonlinear. We refer to the system’s state space as the spaceM where the functions x(n)
take values. In the context of the discrete signals considered here, the state space will
be subsets of the real line. As an example, the well-known Logistic Map has generator
ψ(x) = λx(1 − x), and the corresponding map, defined through (1) has initial value

2
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x(0) ∈ (0, 1). We will show that this map becomes unstable as λ changes, using its
Lyapunov spectrum.

It is not difficult to write down the general solution to (1). Let ψ(k)(x) be the kth com-
position of ψ with itself. By a simple recursion, it is not difficult to show that

x(n) = ψ(n)(x(0)) (2)

is the solution to (1).

The path in the state space that a dynamical system, defined through (2), traces out is
called its trajectory or orbit. A dissipative dynamical system is characterised by conver-
gence of trajectories in its state space. An attractor is defined to be a set of points to
which all neighbouring trajectories converge in phase space. The attractor set consists of
all limit points of the discrete map defined by (1). A point attractor is a single point to
which trajectories converge, also known as a stable fixed point. A dynamical system may
have a set of points which are visited periodically. Such points are referred to as a stable
limit cycle, with periodic orbits. An attractor is also an invariant set, meaning that when
a trajectory starts in it, it remains in the set forever. The largest subset of an attractor
set, consisting of the largest set of points to which all nearby orbits converge, is called
the basin of attraction. In a nonlinear dynamical system, where orbits in an attractor
move apart with increasing time, the system is said to possess a strange attractor. Such
dynamical systems are referred to as being chaotic.

Chaos is often defined to be the aperiodic long run behaviour in a deterministic dynamical
system that exhibits sensitive dependence on initial conditions. There are three so-called
signatures of chaos:

1. Aperiodicity in limiting behaviour, meaning that the system does not converge to a
single point as discrete time increases without bound;

2. It is a deterministic system, with no stochastic component, but is nonlinear;

3. The system exhibits sensitive dependence on initial conditions, meaning arbitrarily
close trajectories will diverge apart exponentially fast.

2.2 Lyapunov Spectrum

Lyapunov exponents of a dynamical system provide a quantitative measure of its sensitivity
to initial conditions. The Lyapunov spectrum of a map is a plot of its Lyapunov exponents.
As pointed out in [Haykin and Li 1995], they give the average rate of convergence or
divergence of the system along the principal axes in phase space. The existence of at least
one positive Lyapunov exponent is a necessary condition for a dynamical system to be
chaotic [Newhouse 1984]. Hence, given a dynamical system, if we can establish that there
is at least one positive Lyapunov exponent, then we can be certain the system will exhibit
chaotic dynamics.

3
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Figure 1: A plot of the Lyapunov spectrum for the logistic map x(n+1) = λx(n)(1−x(n)),
with x(0) = 0.1.

For a dynamical system, such as that generated by (1), where we know the generator ψ, it
has been shown that the complete Lyapunov spectrum can be easily computed [Benettin
et. al. 1980]. This can be done by considering the perturbation of a point of the system,
and applying a linear stability analysis [Haykin and Li 1995].

We focus on the calculation of Lyapunov exponents in the current context of one-dimensional
discrete maps. The ideas to follow can be found in [Williams 1997 and Wolf 1986]. Con-
sider the dynamical system (1), with initial condition x(0). Examine a small perturbation
of this starting point, defined by x(0) + δ(0), where the initial separation δ(0) is assumed
to be very small. Suppose δ(n) is the separation after n iterations of the system. If
|δ(n)| ≈ |δ(0)| enµ, then µ is called a Lyapunov exponent. These can be found, for a
trajectory starting at x(0), from the limit

µ = lim
m→∞

⎛⎝ 1
m

m−1

j=1

log ψ (x(j))

⎞⎠ . (3)

Further details can be found in [Williams 1997]. It is clear from (3) that µ depends on
the starting point x(0). For a given attractor, µ is invariant in the basin of attraction
[Drazin 1992]. If a Lyapunov exponent is negative for a particular orbit, then the orbit

4
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either has a stable fixed point, or a stable limit cycle. In the case where it is positive, the
orbit is in a strange attractor, and the trajectory will be chaotic. Figure 1 is a plot of
the Lyapunov spectrum for the Logistic map introduced previously, with x(0) = 0.1. As
can be observed, the map has stable dynamics until at approximately λ = 3.6, where it
becomes chaotic, followed by periods of stability and then chaos.

In the current context of radar signals in the class CD, we can calculate the Lyapunov
spectrum, and use it to decide which parameter values generate a chaotic signal.

2.3 Radar Ambiguity Function

An important tool in the design and evaluation of radar signals is the radar ambiguity
function [Bird 1974, Levanon 1988, Levanon and Mozeson 2004 and Ringer, Frazer and
Anderson 1999]. As pointed out in [Levanon and Mozeson 2004], it represents the time
response of a signal filter matched to a specified signal of finite energy, when the signal is
received with a time delay τ and a Doppler shift φ relative to the nominal values expected
by the filter. We denote this function as χ(τ,φ). There are a number of variations in the
definition taken for χ(τ,φ). We base ours closely on that in [Levanon 1988 and Levanon and
Mozeson 2004]. For a discretised complex-valued signal x(n), of length N , the ambiguity
function is defined to be

χ(τ,φ) =
1

N

N

n=1

x(n)x∗(n+ τ)e−iφn, (4)

where the star denotes complex conjugate.

[Ringer, Frazer and Anderson 1999] contains a detailed discussion of the desirable features
of radar ambiguity functions. The following discussion is based closely on this source. One
perspective in the radar community is that an ideal radar signal is one which produces
an ambiguity function that is a spike at the origin, and zero everywhere else. The reason
for this is that it can be shown in order to optimally detect a target, it is necessary to
maximise χ(0, 0). Additionally, in order to minimise the probability of false detections of
targets, it is necessary to minimise χ(τ,φ) with (τ,φ) = (0, 0).

As pointed out in [Levanon 1988], the ambiguity function was not introduced to radar
signal analysis via the matched filter, but as a normed difference between a signal and
a copy of it that differs in time delay and Doppler shift [see Bird 1974]. To illustrate
this, suppose we have a discrete radar signal x(n), which we assume is a member of the
Hilbert space of complex valued signals of finite energy, discrete time moduloN , with inner
product < x1, x2 >=

N
j=0 x1(j)x

∗
2(j). The norm induced by this inner product is ||x|| =√

< x, x >. We can consider the return from a radar signal x as a time delay and Doppler
shifted version of the original, and so define an operator D(τ,φ)x(j) = e2πiφj/Nx(j + τ).
By applying properties of inner products, it can be shown that

||x−D(τ,φ)x||2 = 2||x||2 − 2Re (χ(τ,φ)) , (5)

where Re is the real part of a complex number. Expression (5) is the squared normed
difference between the original signal x and its time delayed and Doppler shifted version

5
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Figure 2: Ambiguity function plots for a single frequency pulse. The delay unit (τ) is
seconds, the Doppler unit (φ) is radians and the absolute value of the ambiguity function
scale is linear. The pulse duration is 1 second.

D(τ,φ)x. To be able to differentiate between the two signals, we require the normed
difference (5) to be maximised, except in the case where τ = φ = 0. In the latter case,
the two signals are the same. Note that ||x||2, which is the signal energy, is constant for
a given signal. Hence, to maximise (5), we need to minimise Re (χ(τ,φ)). This can be
achieved if we minimise the absolute value of the ambiguity function (4). Hence, in order
to optimally differentiate a signal from its time delay and Doppler shifted version, we need
an ambiguity function that is like a “thumbtack”, namely a spike at the origin and almost
zero everywhere else.

It is, however, impossible to produce a radar signal with such an ambiguity function. The
main reason for this is that it can be shown that the volume under |χ(τ,φ)| is a non-zero
constant, whose square is the energy in the transmitted signal, and cannot be confined to
a single spike at the origin.

If the absolute value of the ambiguity function has a large volume located near the origin,
producing a wide peak, then the ability of the radar to resolve targets will be limited in
that region. False detections may occur if there are large spikes in the ambiguity function’s
absolute value away from the origin. This may also cause the masking of secondary targets.

6
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Figure 3: Ambiguity function plots for a linear FM pulse, with the same scale units as for
Figure 2, including a linear scale for the absolute value of the ambiguity function. As for
the example in Figure 2, the pulse duration is 1 second.

Figures 2 and 3 are plots of the absolute value of ambiguity functions of two standard radar
signals. The plots in Figure 2 are for a standard single frequency pulse, while that for
Figure 3 are for a standard linear FM pulse [see Levanon 1988 and Levanon and Mozeson
2004 for more details]. In each Figure, two subplots are used. The first one shows the
ambiguity function as a coloured contour map, with colours illustrating the magnitude
of the function at each time delay (τ) and Doppler level (φ). The second plot shows
the ambiguity function as a surface in space. Both signals have a pulse duration of 1
second. The plots of Figure 2 show that the ambiguity function has a large ridge along
the axis φ = 0. As pointed out in [Ringer, Frazer and Anderson 1999], this means that
the corresponding signal will provide high resolution in Doppler shift, but not in time
delay. One signal design feature that can be deduced from the ambiguity function plot of
Figure 2 is that a shorter pulse will provide better range resolution than a longer one. The
ambiguity function plots in Figure 3 show a large ridge at an angle to the τ and φ axes.
It is pointed out in [Ringer, Frazer and Anderson 1999] that the signals corresponding to
such ambiguity functions will have some difficulty in resolving targets. Specifically, it is
possible the signal will resolve all targets well, except those with a Doppler and time delay
product which matches the angle of the ridge.

7
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We will use the ambiguity function in the following section, to decide whether two examples
of members of the class CD would be of potential applicability in a radar context.

8
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3 Two Radar Signals with Chaotic Behaviour

This section introduces two signals from the class CD, and investigates their behaviour.

3.1 Example 1: ψ(x,λ) = λ sin(2πx)

The first signal is that with generator ψ(x,λ) = λ sin(2πx). To illustrate the sensitivity
of the corresponding signal, defined through (2), to initial conditions, consider Figure 4.
This is a plot of the differences of two versions of (2). We denote these two signals as
x(n) and y(n) respectively. One has initial value x(0) = 2, while the second starts with
y(0) = 2 + 10−12. In both cases, λ = 2. The plots in Figure 4 show the original signal
x(n), the perturbed signal y(n) and their pointwise differences x(n)− y(n). It would not
be unreasonable to assume that these signals would evolve almost identically, given the
difference in initial values is 10−12. Figure 4 shows that they do initially, but there is then
a divergence apart. As pointed out previously, such behaviour is characteristic of a chaotic
system.

0 50 100 150 200 250 300 350 400
−2

0

2
Original Signal

0 50 100 150 200 250 300 350 400
−5

0

5
Perturbed Signal

0 50 100 150 200 250 300 350 400
−5

0

5
Pointwise Differences of Signals

Figure 4: Plots of signals with generator ψ(x,λ) = λ sin(2πx). The first plot shows an
orbit starting with x(0) = 2, while the second shows an orbit perturbed by a factor of 10−12.
The bottom subplot shows the pointwise differences x(n)− y(n).
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Figure 5 is a plot of the Lyapunov spectrum for this signal, with λ ranging from 1 to 5.
For each value of λ, (3) is estimated using m = 1000, with an initial starting point of
x(0) = 2. This spectrum is invariant in a basin of attraction, and so will only vary in
different regions of stability. In the current case, the signal is entirely chaotic, and then
undergoes periodic transitions from chaos to stability, as λ increases.

1 1.5 2 2.5 3 3.5 4 4.5 5
−35

−30

−25

−20

−15

−10

−5

0

5
Plot of Lyapunov Spectrum

λ

µ

Figure 5: The Lyapunov spectrum for the signal with generator ψ(x,λ) = λ sin(2πx).

Figure 6 is a plot of the signal (2) as a function of λ. In the plot, λ ranges from 0.1 to
2, in increments of 0.001. The starting value for each iteration is x(0) = 2. For each λ,
10,000 iterations have been used to generate each point of the signal. The plot shows the
stability of the solution as a function of λ, and then its transition to unstable and chaotic
behaviour. An interesting feature of the transition to chaos is that the signal has a single
stable solution, which evolves to a cone-like structure. A closer examination of the plot
shows this behaviour occurs frequently.

Figure 7 contains a number of plots of the absolute value of the ambiguity function χ(τ,φ)
for this signal, with λ = 2. Note that the signal under consideration is defined in terms
of discrete time, and consequently the plot does not have the same resolution as those in
Figures 2 and 3. The first two plots show the magnitude of the function, in (τ,φ) space,
using colour-contour plots. The third plot shows the function |χ(τ,φ)| as a surface in
space. The final plot shows the absolute value of the normalised autocorrelation function

10
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Figure 6: Evolution of iterations of the signal with generator ψ(x,λ) = λ sin(2πx), as a
function of λ. For each λ, the vertical axis shows the result of 10,000 iterations of the
signal.

R(τ) = 1
maxν |χ(ν,0)| |χ(τ, 0)|. The scale used for τ is discrete time units, while φ is in

radians. The autocorrelation plot is over a larger range of values of τ in contrast to the
three other plots. The ambiguity function in this case is almost a spike at the origin, with
ripples of volume spread out from the origin (τ,φ) = (0, 0).

[Ringer, Frazer and Anderson 1999] class such signals as irregular or noise-like. Such
signals are aperiodic and uncorrelated with themselves except on small intervals. The
aperiodicity of the signal under consideration is inherently related to its chaotic nature.
Figure 7 shows it has the expected autocorrelation property.

Due to the shape of the ambiguity functions in Figure 7, the corresponding signal should
have an ability to resolve targets in both time delay and Doppler shift. However, it
would be expected that such a signal may not provide a radar with a sufficient ability to
differentiate targets in clutter with a low radar cross section (RCS), due to the extensive
high sidelobe response in the ambiguity function.

Figure 8 shows the ambiguity function of Figure 7 on much larger time delay and Doppler
shift intervals.

11
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3.2 Example 2: ψ(x,λ) = sin(2πx) + cos(2πλx)

The next example we consider is that with generator ψ(x,λ) = sin(2πx) + cos(2πλx).
As for the first signal, we show its sensitivity to initial conditions. Figure 9 is a plot of
the evolutions of two orbits of this signal, with one slighly perturbed, and corresponding
pointwise differences of two evolutions of (2). The first begins with x(0) = 0.01, while the
second is perturbed by 10−12, so that it evolves from y(0) = 0.01 + 10−12. In both cases
we choose λ = 4. As can be observed from Figure 9, the two corresponding trajectories
evolve together for a very short period, then diverge apart.

Next we examine the Lyapunov spectrum for this signal. Figure 10 is the Lyapunov
spectrum, with λ ranging from 0.1 to 5. We have chosen the initial value x(0) = 0.01, for
each λ, and m = 1000 as before. The spectrum shows this signal becomes increasingly
more chaotic as λ increases. There is a very significant upward trend in Figure 10, and
initial periods where there is stability.

Figure 11 is a plot of the signal, as a function of λ. In this case, λ varies from 0.1 to 2,
in steps of 0.001. The initial condition is x(0) = 0.01, for each λ, and 10,000 iterations
have been used to produce each value. The plot shows some very unusual behaviour. The
Lyapunov spectrum over this range of λ shows the signal is chaotic, with short periods of
stability. A close examination of Figure 11 shows that these periods of stability bifurcate
to chaos in a conical structure. Near λ = 0.5 is a clear illustration of this. There is a short
period where the signal has become stable, then bifurcates into a cone preceeding chaos.
What is not so clear from the plot, but can be found on magnification, is that there are
many of these cone-like transitions. One small one can be seen roughly after the significant
cone, near λ = 0.5, becomes chaotic. At around λ = 1.2 another can be observed. Figure
12 is a magnification of the plot in Figure 11, over the region where 1.5 ≤ λ ≤ 1.7.
Increasing the number of iterations used, for each λ, improves the resolution of these plots
and shows these transitions more clearly.

Figure 13 is a complementary plot of those in Figure 7, for this second signal under
investigation. In this case we take λ = 4. As for the plots in Figure 7, we see that the
absolute value of the ambiguity function is very similar to that of the first example. There
is a difference in the contours as can be seen by comparing both second plots in Figures 7
and 13. As before, this signal is a member of the class of irregular/noise like signals. Its
utility is exactly the same as that of the previous example.

Figure 14 is a complementary plot of that in Figure 8, showing the absolute value of the
ambiguity function on a larger time delay and Doppler shift grid.
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Figure 7: Ambiguity function and autocorrelation plots of the signal with generator as in
Figure 6. We describe the plots from the top down. The first plot shows the absolute value
of the ambiguity function’s concentration in terms of a colour spectrum. The second plot
shows a coloured contour version of the first. The third plot shows the absolute value of
the ambiguity function as a surface in space. Finally, the fourth plot shows the normalised
autocorrelation function. Since the corresponding signal is in discrete time, the time de-
lay (τ) axis values are in discrete time units. Better graphical resolution is achieved by
extending this axis (see Figure 8). The Doppler axis is in units of radians, while the time
delay is measured in seconds. The absolute value of the ambiguity function is in a linear
scale. The autocorrelation plot is shown over a larger spectrum of values of τ than used
in the previous three subplots, and also is in a linear scale.
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Figure 8: Ambiguity function plots for the signal with generator as in Figure 7, except the
plots are over larger time delay and Doppler shift intervals. The top plot is of the absolute
value of the ambiguity function, again as a surface, while the second plot shows the contours
and corresponding ambiguity function values using a colourbar. The ambiguity function is
in a linear scale.
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Figure 9: Differences of two signals generated with ψ(x,λ) = sin(2πx) + cos(2πλx), with
a perturbation of 10−12 in initial starting values. The top plot is of the original signal,
the second is a slightly perturbed version, while the third is of the corresponding pointwise
differences.

15



DSTO—TN—0660

0 1 2 3 4 5
−3

−2

−1

0

1

2

3
Plot of Lyapunov Spectrum

λ

µ

Figure 10: The Lyapunov spectrum for the signal with generator ψ(x,λ) = sin(2πx) +
cos(2πλx).
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Figure 11: A plot of the result of 10,000 iterations of the signal with generator ψ(x,λ) =
sin(2πx) + cos(2πλx), as a function of λ.
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Figure 12: A magnification of the plot of Figure 11, with λ in the range from 1.5 to 1.7,
in steps of 0.0001. The plot shows the generation of two new conical structures, indicating
the transition from chaos to order. The first occurs at approximately λ = 1.525, while the
second is at roughly λ = 1.65.
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Figure 13: Ambiguity function plots for the signal with generator as for Figure 11. As in
the ambiguity and autocorrelation plots in Figure 7 the first two subplots are colour-contour
illustrations of the size of the absolute value of the ambiguity function in (τ,φ) space.
The third plot is a surface plot, while the fourth plot is of the normalised autocorrelation
function. The ambiguity function is in a linear scale.
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Figure 14: A plot similar to that of Figure 8, except for the signal of Figure 13. As before,
the first plot shows the absolute value of the ambiguity function as a surface, while the
second is a colour-coded contour plot. The ambiguity function is also in a linear scale, as
previously.
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4 Conclusions

This note introduced a class of recursively defined signals, motivated from [Haykin and Li
1995]. Their stability was analysed using a Lyapunov spectrum. These signals are members
of a class of irreguar/noise like signals described in [Ringer, Frazer and Anderson 1999].
Based upon the shape of the absolute value of their ambiguity functions, we can conclude
that they should have an ability to resolve targets in both time delay and Doppler shift.
The disadvantage of such signals is that they have relatively high range and Doppler
sidelobes in the ambiguity diagram, which will limit their ability to discriminate small
targets against clutter, and small targets in the vicinity of larger targets.
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